Otogelin: a glycoprotein specific to the acellular membranes of the inner ear.

نویسندگان

  • M Cohen-Salmon
  • A El-Amraoui
  • M Leibovici
  • C Petit
چکیده

Efforts to identify the specific components of the mammalian inner ear have been hampered by the small number of neuroepithelial cells and the variety of supporting cells. To circumvent these difficulties, we used a PCR-based subtractive method on cDNA from 2-day-old mouse cochlea. A cDNA encoding a predicted 2910-amino acid protein related to mucin has been isolated. Several lines of evidence indicate, however, that this protein does not undergo the O-glycosylation characteristic to mucins. As confirmed by immunocytochemistry and biochemical experiments, this protein is specific to the inner ear. Immunohistofluorescence labeling showed that this protein is a component of all the acellular membranes of the inner ear: i.e., the tectorial membrane of the cochlea, the otoconial and accessory membranes of the utricule and saccule, the cupula of the semicircular canals, and a previously undescribed acellular material covering the otoconia of the saccule. The protein has been named otogelin with reference to its localization. A variety of nonsensory cells located underneath these membranes could be identified as synthesizing otogelin. Finally, this study revealed a maturation process of the tectorial membrane, as evidenced by the progressive organization of otogelin labeling into thick and spaced radial fiber-like structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Otolith tethering in the zebrafish otic vesicle requires Otogelin and α-Tectorin

Otoliths are biomineralised structures important for balance and hearing in fish. Their counterparts in the mammalian inner ear, otoconia, have a primarily vestibular function. Otoliths and otoconia form over sensory maculae and are attached to the otolithic membrane, a gelatinous extracellular matrix that provides a physical coupling between the otolith and the underlying sensory epithelium. I...

متن کامل

Autoimmune Inner Ear Disease- A Clinical Viewpoint

Recent developments in medicine have given us a better insight into a group of disorders known as autoimmune diseases. In particular, advances have occurred in our understanding of the Autoimmune Inner Ear Disease (AIED). In this article, the authors review the different postulated theories in the pathogenesis of this disease. The clinical presentation, the available para-clinical diagnostic to...

متن کامل

Characterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane

Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...

متن کامل

Effect of replacing cochlea contour with inner ear contour on cochlea dose-volume calculations in conventional 2 dimensional and conformal 3 dimensional radiotherapy of brain

Introduction: Sensorineural hearing loss (SNHL) is one of the possible complications of radiotherapy treatment of brain tumors. The auditory system of patients with brain tumors often is placed inside of radiation field and receives a significant amount of radiation dose resulting in hearing loss. The purpose of this study was to compare contouring and delivery dose to cochlea...

متن کامل

Biophysical properties of single potassium channel in the brain mitochondrial inner membrane of male rat with Alzheimer’s disease

Introduction: Alzheimer’s disease is a progressive neurodegenerative disorder, characterized by impairment of memory and changes in behavior and personality. Recent evidence suggests that mitochondrial channels play important roles in memory disorders. Accordingly, the biophysical properties of a single potassium channel were investigated in the brain mitochondrial inner membrane of rat with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 94 26  شماره 

صفحات  -

تاریخ انتشار 1997